Contribution from the Kamerlingh Onnes Laboratorium der Rijksuniversiteit, Leiden, The Netherlands, and the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60680

Magnetic Investigation of Copper (11) Diethyldithiocarbamate

J. A. VAN SANTEN, A. J. VAN DUYNEVELDT,* and RICHARD L. CARLIN

Received October 23, *1979*

The susceptibilities of $Cu(S_2CNEt_2)$ have been measured as a function of temperature, frequency, and applied field. The data are well described by a model based on weakly interacting dimers and result in a ferromagnetic intrapair-exchange constant of only about 0.9 K and an antiferromagnetic interpair interaction of -0.007 K.

Introduction

The compound $bis(N,N$ -diethyldithiocarbamato)copper(II), $Cu(S_2CNEt_2)$ (hereafter, $Cu(dtc)_2$), has been investigated frequently. $1-3$ The interest in the molecule lies with the fact that it has a binuclear structure and that several measurements^{1,2} have been interpreted in terms of a strong ferromagnetic intradimer interaction. This analysis has depended upon susceptibility data taken above 4.2 K and the use of a modified Bleaney-Bowers equation⁴ (eq 1) for 1 mol of in-

$$
\chi_0 = [Ng^2 \mu_B^2 / 3k_B (T - \Theta)] [1 + \frac{1}{3} \exp(-2J/k_B T)]^{-1} \tag{1}
$$

teracting $S = \frac{1}{2}$ ions. The parameters reported as fitting the data are $\langle g \rangle = 2.041$, $2J/k_B = 34.5$ K, and $\theta = -1.37$ K. The negative Curie-Weiss constant was interpreted in terms of an antiferromagnetic interdimer interaction.

We questioned this interpretation in an earlier publication, $³$ </sup> where susceptibility and relaxation data in the temperature range 1-20 K were presented. Further data, to lower temperatures, are presented here. If the large ferromagnetic interactions were important in $Cu(dtc)₂$, it should be apparent in our low-temperature susceptibility data. We find no such result. It is not simply a question of experimental accuracy; unpublished data between 1.7 and 7 K of Hatfield⁵ furnished us do not match his previously reported results 1,2 but do agree with our susceptibility data. The different conclusions must therefore arise from the methods of data analysis presented in ref 1 and 2. By implication, the conclusion that strong ferromagnetic intradimer interaction occurs in all the molecules described in ref 1 and 2 must also be questioned.

Experimental Details

The compound $Cu(dtc)_2$ was prepared as reported.¹ No difference in magnetic properties was observed between the raw material and a sample recrystallized from chloroform. Proper composition was confirmed by both elemental analysis and by comparison of X-ray reflections with those reported in the literature.⁶ Susceptibilities were measured by the mutual inductance technique in the usual fashion. Further details may be found in ref 7.

Results

The inverse zero-field ac susceptibility of $Cu(dtc)₂$ at low temperatures is displayed in Figure 1. Above 2 K, χ_0 obeys the Curie-Weiss law with $C = 0.397 \pm 0.008$ emu K mol⁻¹ and $\theta = 0.25 \pm 0.05$ K. Below 2 K, a deviation is observed, with χ_0^{-1} becoming larger.

The ac susceptibility as a function of applied field and frequency was also measured at 2 K. It was observed that the spin-lattice relaxation time τ increased from 10^{-5} to 4 \times s as *H* was varied from 1 to 30 kOe. Thus $\chi'(\omega)$ equals the isothermal susceptibility, χ_T , for frequencies of a few hundred hertz. The so-derived susceptibility, expressed as χ_{T}/χ_0 , is illustrated in Figure 2.

The adiabatic susceptibility, χ_{ad} , was also measured at several temperatures. A measuring frequency of 480 kHz, which fulfills the condition⁴ $\omega \tau >> 1$, was used. The usual

relationship for the field-dependent behavior of χ_{ad} of paramagnets may be written as eq 2, where b/C is a measurement

$$
\chi_0/\chi_{\rm ad} = 1 + H^2/[(b/C)(1 - \Theta/T)^3]
$$
 (2)

of the internal field. This relationship was obeyed by $Cu(dtc₂)$ in fields less than 10 kOe, but deviations were observed at larger fields (Figure 3). The quantity (b/C)(l - *8/T)'* may be obtained from the linear part of the χ_0/χ_{ad} vs. H^2 relationship. Then, b/C could be determined from a plot of the third root of $(b/C)(1 - \theta/T)^3$ vs. T^{-1} , as illustrated in Figure 4. This procedure leads to a fit with $b/C = 60 \pm 4 \text{ kOe}^2$ and θ = 0.4 \pm 0.1 K. The deviations from this simple model, which occur at strong fields (Figure 3), will be discussed below.

Discussion

It was observed above that the Curie-Weiss law is not followed for temperatures below 2 K. **A** simple molecular field model for interdimer interactions,⁷ too lengthy to reproduce here, leads to a modified Bleaney-Bowers relationship (eq 3).

$$
\chi_0 = 4C(\frac{1}{2})/[T[1 + \frac{1}{3} \exp(-2J/k_B T)] - 32J'/k_B]
$$
 (3)

Here, $C(^1/2)$ is the Curie constant for a spin $\frac{1}{2}$ system, J/k_B is the intradimer-exchange constant, and J'/k_B is the interdimer-exchange constant. **A** positive exchange constant refers to ferromagnetic interaction, while antiferromagnetic interaction is characterized by a negative exchange constant. **A** least-squares fit (dashed line in Figure 1) of the data to eq 3 yielded $C_{1/2} = 0.389 \pm 0.004$ emu K mol⁻¹ (corresponding to $g = 2.04 \pm 0.02$), $J/k_B = 0.96 \pm 0.1$ K, and $J'/k_B = -0.007$ \pm 0.003 K. The g value agrees well with that measured directly by EPR.¹

The isothermal susceptibility for this system is readily calculated in terms of the local field $H_L = H + H_e$ where *H* is the applied field and H_e is the exchange field. The result⁷ is

$$
\frac{\chi_{\text{T}}(H)}{\chi_0} = \frac{\chi_{\text{T}}(H_{\text{L}}, J' = 0)}{\chi_0(J' = 0)} \frac{1 - \alpha \chi_0(J' = 0)}{1 - \alpha \chi_{\text{T}}(H_{\text{L}}, J' = 0)} \tag{4}
$$

In this equation, $\alpha = 32J'/Ng^2\mu_B^2$ and the other expressions on the right-hand side refer to systems of isolated pairs. By choosing $g = 2.04$, one finds eq 4 is not sensitive to J' if both J and J'are used as parameters. For $J'/k_B = -0.007$ K, the

 (7) A.J.v.D., Kamerlingh Onnes Laboratorium der Rijksuniversiteit, Leiden, The Netherlands.

^{*} To whom correspondence should be addressed at Rijksuniversiteit.

⁽¹⁾ J. F. Villa and W. E. Hatfield, *Inorg. Chem.,* **10,** 2038 (1971). (2) K. T. McGregor, D. J. Hodgson, and W. E. Hatfield, *Inorg. Chem.,* **12,** 731 (1973).

A. J. van Duyneveldt, J. **A.** van Santen, and R. L. Carlin, *Chem. Phys. Lett.,* **38,** 585 (1976). R. L. Carlin and **A.** J. van Duyneveldt, "Magnetic Properties of Tran-

sition Metal Compounds", Springer-Verlag, New York, 1977.
W. E. Hatfield, private communication.

 (6) M. Bonamico, G. Dessy, **A.** Mugnoli, **A.** Vaciago, and L. Zambonelli, *Acta Crystallogr.,* **19,** 886 (1965). J. **A.** van Santen, Thesis, Leiden, 1978. Copies are available from

Figure 1. Inverse zero-field susceptibility of $Cu(S_2CNEt_2)_2$ as a function of the temperature. Measurements on the "raw material" are given as black squares, while the results of a sample consisting of powdered single crystals are shown as the open circles. The solid line represents the Curie-Weiss fit with $C = 0.397$ emu K mol⁻¹ and θ = 0.25 K. The dashed curve is the theoretical fit as discussed in the text.

Figure 2. Normalized isothermal susceptibility of $Cu(S_2CNEt_2)$ (the "raw material") as a function of magnetic field, at $T = 2.00 \text{ K}$. The dashed curve is the theoretical fit as discussed in the text.

value resulting from the χ_0 analysis, the best fit (dashed curve in Figure 2) corresponds to $J/k_B = 1.08$ K.

Turning now to the adiabatic susceptibility, a straightforward but again lengthy calculation within this model⁷ shows that eq 2 should be modified to read as eq 5, where $1 + \epsilon \approx$

$$
\frac{\chi_0}{\chi_0 - \chi_{\rm ad}} = 1 + \epsilon + \left(\frac{b}{C}\right)\left(1 - \frac{\Theta}{T}\right)^3 / H^2 \tag{5}
$$

 $1 - J/2k_BT$ and Θ is now defined as $J/2k_B + 8J'/k_B$. The experimental values of $\chi_0/(\chi_0 - \chi_{ad})$ were indeed found to follow a linear H^{-2} relationship up to the strongest fields (Figure 3). Again a value of $(b/C)^{1/3}(1 - \Theta/T)$ was obtained as a function of T^{-1} , which, in a similar way as mentioned above, yields $b/C = 58 \pm 4$ kOe². This result leads to *b* = $(23 \pm 2) \times 10^6$ ergs K mol⁻¹, by using the Curie constant as obtained from the χ_0 data. As in the high-temperature approximation $b = 3NJ^2/8k_B$,⁷ this corresponds to an intradimer-exchange interaction $|J/k_B| = 0.86 \pm 0.05$ K, in nice agreement with the results from the low-frequency susceptibility data.

Figure 3. Example of the field dependence of the adiabatic susceptibility of $Cu(S_2CNEt_2)_2$ (the "raw material"): (a) plotted in the usual way to fit eq 2; (b) fit to eq *5.*

Figure 4. $(b/C)^{1/3}(1-\Theta/T)$ as a function of the inverse temperature.

Conclusion

We have proposed a model of weakly interacting pairs of exchange-coupled copper ions which includes both the intrapair- and the interpair-exchange interactions in a quantitative way. This is in contrast to the earlier model,² which suggested a strong ferromagnetic intrapair interaction. The model gives a satisfactory description of the zero-field susceptibility as well as of the isothermal and adiabatic susceptibilities of Cu- $(S_2CNEt_2)_2$, by using a J/k_B of about 0.9 K for the ferromagnetic intrapair-exchange interaction and $J'/k_B = -0.007$ K for the antiferromagnetic interaction between adjacent pairs. These results prove that the intrapair exchange is relatively weak, despite the close proximity of the metal ions to each other.

Acknowledgment, R.L.C. thanks the National Science Foundation for support under NSF Grant DMR-76- 18963. **Registry No.** Cu(dtc)₂, 13681-87-3.